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Abstract – In this paper we present a method that addresses the problem of 

recognition and localisation of plants in row-cultivated crops. As most crops are 
cultivated in rows and sown in a defined pattern, taking advantage of the geometrical 
properties of the scene may improve the results of crop recognition and localisation. The 
method proposed is to combine geometrical features of the scene (context) with 
individual plant features, e.g. colour and shape features. The method has been evaluated 
on two datasets of sugar beets at different stages of growth. Using an individual plant 
classifier (IPC), the best classification rate for datasets 1 and 2 was 89.0% and 94.9% 
respectively.  Even though the classification rate is high, the drawback of using IPC is 
that it must be properly trained for each dataset separately and is thus sensitive to 
variations in plant appearance and weed species. The context method is more robust to 
these variations, and a classification rate of 78.4% was achieved for dataset 1. For 
dataset 2 the context method fails due to high weed pressure, up to 400 weeds/m2. 
However, when it works properly, as in dataset 1, it is very robust to variations in crop 
appearance, although with one drawback. If the emergence of crops is low it will leave 
many weeds standing at crop positions. The idea of sequential combination of the 
classifiers is that the IPC removes as many weeds as possible, i.e. it works as a weed 
filter, while leaving possible crop candidates to the context method. We showed that 
sequential combination of the classifiers increases the overall classification rate, 
depending on which IPC used, by 3 to 8% for dataset 1 and 3 to 4% for dataset 2 
compared to using IPC only. The classification rate was 91.9% for dataset 1 and 98.4% 
for dataset 2.  

 
I. INTRODUCTION 

 
The increasing cost of chemicals and soil pollution caused by herbicide residues call 

for alternative methods of crop protection. A potential way to reduce chemicals is to 
use precision techniques for various types of agricultural operations, so that the 
chemicals can be placed where they have an optimal effect with a minimum quantity. 
For some operations it will even be possible to abandon the use of chemicals and 
apply other methods, e.g. mechanical weed control. 

Our goal is to carry out intra-row (the area within the crop row, see Fig. 1 for 
definition) weed control. In the past decade, a great deal effort has been put into 
automatic guidance systems for inter-row guidance [1]. This has resulted in an 
improvement in the inter-row (the area between the rows) treatment, i.e. the untreated 
band could be reduced to a few centimetres. However, the challenging task is still 
intra-row cultivation. The problem of weed control in the seed line is to determine the 
crop positions. When the crop is located, a mechanical tool or a precision sprayer 
could be used to remove the weed.  

As most crops are cultivated in rows and sown in a defined pattern, taking 
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advantage of the geometrical properties of the scene may improve the results of crop 
recognition and localisation. Knowing that the crops are sown in rows with a certain, 
constant distance between them, we showed in [2] that it is possible to recognize and 
locate the crops on the basis of this information instead of looking only at individual 
features of a plant, e.g. morphological or spectral properties. 

If the emergence of crops is high and the weed pressure is low, the context method 
[2] is sufficient to recognize and locate the sowing pattern and is able to classify over 
90 % of the crops. However, since crops do not have 100% emergence, some weeds 
will be classified as crops, when they grow at positions where the crop should have 
grown up, see Fig. 2, third ellipse. This problem grows with increasing weed pressure 
and lower emergence of crops. Increasing weed pressure also has the effect of making 
the crop pattern “disappear” among the weeds. This may lead to a collapse of the 
context method as the grid can not be found correctly. To address these two problems, 
the context method is here combined with classification methods based on individual 
plant features. 

The aim of this paper is to present a vision-based plant recognition and localization 
algorithm that combines information about the scene structure, geometrical properties, 
with individual plant features, e.g. colour, shape and moments, to improve the 
recognition and localisation of plants.  
 

 
 

Fig. 1. Dataset 1. Area between the lines defines the intra-row area. Crops are marked with a square and 
the ellipses are the size of the Gaussian bells (explained in section II.D). 

 
Fig. 2. Dataset 2. Area between the lines defines the intra-row area. Crops are marked with a square 

and the ellipses are the size of the Gaussian bells (explained in section II.D). An example of a missing 
crop in the third ellipse, where the context method classifies the weed in the middle as crop. 
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II. METHODS AND MATERIALS 
 
A. Data collection 
 

Two sets of colour images were collected from different fields of sugar beets at two 
different stages of growth. Crops in dataset 1 are in the first true leaf stage, meaning 
that they have two pairs of leaves, see Fig. 1. For dataset 2, the crops are in the 
cotyledon stage, meaning that they have one pair of leaves, see Fig. 2. The images 
were collected using the weeding robot platform described in [3], see Fig. 3.  

Changes in illumination cause colour shifts, and the colour camera is therefore 
mounted inside an enclosure to avoid natural light using halogen lamps only as the 
light source. The most important properties of each data set are given in Table 1. 

Different camera systems with different image resolution were used for the two 
datasets. In dataset 1 the size of each image corresponds to the resolution of the 
camera. In dataset 2, high resolution images were generated by merging three images 
into one high resolution image. Each image covers about 80 and 60 cm in datasets 1 
and 2 respectively. 

There was no overlap between the images and the position (defined as where the 
stem meets the soil) of the crops was recorded manually in all images.  

 
TABLE 1 

PROPERTIES OF EACH DATASET 
Property Dataset 1 Dataset 2 

No. images 143 54 
Stage of growth First true leaf cotyledon 

Image size (pixels) 768x576 1500x480 
Image resolution (pixels/mm) 1.04 2.56 

Weed pressure (weeds/m2) 50 400 
No. crops 574 196 
No. weeds 414 828 

Emergence (%) 71 73 
Width of the intra-row area (mm) 82 65 

 

 
Fig. 3. Autonomous robot for intra-row weed control. 



4 

B. Image Binarization 
 

A linear discriminant in the normalized RGB colour space [4] was used to segment 
plant material from soil, see (1). Pixels that were too dark (intensity below 50) were 
classified as soil. The discriminant function was generated by randomly selecting 
pixels belonging to foliage and soil from a subset of images in the data sets. The 
parameters of the discriminate function for each data set are given in Table 2. 
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where gn = G/(R+G+B) and rn = R/(R+G+B). 
 

TABLE 2 
DISCRIMINANT PARAMETERS 

 kdiscrim mdiscrim IThreshold 

Data set 1 0.86 0.06 50 
Data set 2 0.54 0.18 50 

 
C. Segmentation of plants 

 
After binarization, the next step is to segment pixels into regions with similar 

characteristics. The method used for grouping pixels into objects is the connected 
component labelling (CCL) algorithm [5]. Not all plants are grouped into one single 
object after CCL. One plant sometimes corresponds to more than one object. These 
objects are treated by an additional merging step. Some objects consist of both crop 
and weed. These are further referred to as CCL error. In this paper these objects are 
not further analysed and are treated as being a crop.  As the two datasets have 
different characteristics, two different merging algorithms were applied. A very 
simple merging algorithm was used for dataset 1, which only merges objects that lay 
in a certain distance from each other. The reason that this simple algorithm is 
sufficient is that the weed pressure is relative low and the crops often correspond to 
one object after the CCL. The merging distance, the distance between object centres, 
was found experimentally and set to 27.6 mm. The segmentation results for dataset 1 
are shown in Table 3, where the three crop classes, i.e. Correctly segmented, CCL 
error and Merging error, are shown separately. 

 
TABLE 3.  

MERGING RESULTS. TOTAL 457 CROPS AND 474 CROP OBJECTS AFTER MERGING. 
Type 1. Correct segmented 2. CCL error 3. Merging error 

N 378 23 56 
% 83% 5% 12% 

 
Dataset 2 required a more complex merging algorithm owing to higher weed 

pressure and the fact that only a few crops correspond to one object after 
segmentation. The merging algorithm used following merging criteria: 

 
• The distance between object centres. 
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• The distance between objects’ boundaries. 
• A similarity measurement between the objects. 
• Only two objects could be merged (most of the plants were in the cotyledon 

stage). 
• The algorithm was tuned to merge crops, not weeds (error in weed merging 

is assumed not to influence the classification result). 
The algorithm is based on three thresholds: distance between object centres, 

distance between object boundary and the number of objects to be merged with each 
other. The object and boundary distance was calculated from a subset of dataset 2, see 
Table 4.  
 

TABLE 4.  
MERGING DISTANCES AQUIRED FROM A SUBSET OF DATASET 2. 

Merging distances Average[mm] Std  Min [mm] Max [mm] 
Boundary 2.8 1.12 0.87 4.96 
Object centre 17.9 2.89 12.48 23.4 

 
The similarity measure is the sum of the quotient between features. The features 

were experimentally chosen to be: area, form factor, compactness and moment1 (for a 
definition of features, see appendix). The distance threshold was set to 23.6 mm and 
the boundary threshold to one third of the distance threshold. A similarity measure 
was then calculated for all objects that lay close to each other. The two most similar 
objects were then merged. The results are given in Table 5. 
 

TABLE 5.  
MERGING RESULTS. TOTAL 196 CROPS AND 209 CROP OBJECTS AFTER MERGING. 

Type 1. Correct segmented 2. CCL error 3. Merging error 
N 139 47 10 
% 70.9% 24.0% 5.1% 

 
For dataset 2, the CCL error also led to a merging error in only three cases. This 

means that even if a weed, or part of a weed, was segmented together with a crop, the 
whole crop was still correctly merged. 

A final remark is that neither of these algorithms is claimed to be optimal and 
require further investigations. The classification results for these three crop categories, 
i.e. Correctly segmented (Crop 1), CCL error (Crop 2) and Merging error (Crop 3), 
will be presented separately in this paper. 
 
D. Context method 
 

Knowing that the crops are sown in rows with a certain, constant distance between 
them, we showed in [2] that it is possible to recognize and locate the crops on the 
basis of this information instead of looking only at individual features of a plant, e.g. 
morphological or spectral properties. The intra-row distance between crops follows a 
Gaussian distribution [6], see Fig. 4. The distribution of the intra-crop distance was 
tested and proven to be normally distributed with D’Agostino’s normality test with a 
95% confidence level. Under the assumption of normality, the crop row can be 
modelled as a set of Gaussian bells [2], see Fig. 5, where the distance between the 
bells is the mean inter-crop distance, µd, with the standard deviation, σd, and the 
standard deviation of the alignment error of the crops relative the crop row, σe. It is 
important to note that the variance of the intra-crop distance, σd

2, does not increase 
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with an increasing number of bells, i.e. the crop distances are assumed not to be a 
random walk (an effect caused by a new seed being sown when the sowing machine 
has travelled a certain distance). This is true for small numbers of N, where the 
variance of the intra-crop distance dominates by imprecise positioning of the crop 
seed when it is dropped into the seeding furrow and field conditions influence where 
crops emerge relative to their seed position [7].  

 The conditional probability density function for the crop positions (x, y), given 
crop grid position gi, and the assumed sown position of this crop on the grid, denoted 
by the bell index n, are defined as: 
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where n is the bell index [1..N] and N is the number of Gaussian bells. x is the 
position along the row and y the position perpendicular to the row. µe is the row 
position and is assumed to be known. The grid position, gi, describes the placement of 
the crop row model along the row. It ranges from zero to plant distance µd and is 
discrete according to the image pixels. 

To find the most probably grid position given the positions of the crops we use 
Bayes’ theorem [8]. This gives: 
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The value of function (3) can be calculated by placing the model at every possible 
grid position gi for the actual image. In the ideal case, with one crop around each sow 
position and no weed, this is straightforward. In the presence of a weed, however we 

 
Fig. 4. Crop distance follows a Gaussian distribution. The second peek is due to missing 

crops. 
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have to choose which plant contributes in each bell, i.e. pn(x,y|gi,n), as only one crop 
is assumed in each bell. With no other apriori information about the plant than 
position, the plant that is most likely to be a crop based on the position is chosen, i.e. 
the highest pn(x,y|gi,n) within each bell n. If no plant is found within the 99.7 % area 
(3 sigma) of a bell n, see the ellipses drawn in Figs. 1 and 2, a missing crop is 
assumed and pn(x,y|gi,n) is set to zero. With no additional information about the 
apriori probability of the crop grid position, P(gi), it is assumed to be a uniform 
distribution. However, if the distance travelled between consecutive samples of the 
row structures (images) is known, the apriori probability for the grid position can be 
estimated. By maximizing (3) we obtain the most likely position of the crop. Since the 
denominator is the same for all possible positions of the crop row, it need not to be 
calculated and (3) can be reduced to: 
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i.e. the grid is estimated to be at the grid position with highest posteriori probability. 
Once the grid is found, the plants that contribute in each bell at this position are 
classified as crops. 

As mentioned, in each Gaussian bell, it is assumed that only one plant can be a crop 
candidate and a crop candidate is chosen by the highest position probability. 
However, if further classification is applied to the plant, i.e. if colour and shape 
features are included, the probability for a plant to be a crop or weed on the basis of 
these features can be combined with the position probability before calculating the 
most likely position of the crop grid. This way of combining classifiers is further 
discussed in section II.G. 

In (2) it is assumed that the bells can be placed exactly over the crop row. However, 
in a real situation, i.e. when driving along the row, the exact position of the row 
structure is not known because of the movement of the camera, see Fig. 1.  This has 
the greatest impact on the lateral position of the row, while the error caused by 
heading is negligible. To solve this, (2) can either be extended by including the 

 
Fig.5. Gaussian bells that correspond to average plant distance and alignment error of the 

plant row. N = 4. 
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standard deviation of the movement of the camera (5) or get the row offset and 
heading from a guidance system. In this paper we use the former approach. 

A second extension to (2) is to add the difference between the true crop positions 
and the estimated crop position. The crop position is defined as the place at which the 
stem meets the soil. However, this position is often difficult to estimate by computer 
vision, and the centre of the boundary-box around the plant foliage is therefore used to 
estimate the plant position. The difference between the estimated position and the true 
position was included in (2). The extensions for (2) are defined as: 
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where σpc is the standard deviation between the estimated crop position and the true 
crop position and σlm is the standard deviation of the lateral movement of the camera. 
It is assumed that these errors are uncorrelated. The values used in this paper for (2) 
are listed in Table 6. 
 

TABLE 6.  
CONTEXT METHOD PARAMETERS FOR EACH DATA SET  

Dataset µd (mm) σd´ (mm) σe´ (mm) N 
1 170.8 24.0 13.6 5 
2 118.8 14.8 10.8 5 

 
E. Individual plant features 
 

Using different individual plant features such as colour, shape and moments to 
distinguish between plants species is a well known approach and has been employed 
by a number of authors [8-14]. The advantage is that they are relative easy to calculate 
and good classification results are often achieved, often over 90%. In [3] we presented 
a study of classification of crops and weeds using 19 different features, six colour 
features, seven “shape” features and six moment-based features, all defined in the 
appendix. We showed that colour is an important feature for classification and, on the 
database used in [3], we achieved a classification rate of 96% using three features 
only. In this paper we apply the same features to our two new datasets.  

 
F. Classification methods and feature selection 

 
Three different types of classifiers were evaluated: Gaussian quadratic, k-Nearest 

Neighbour (kNN) and an Artificial Neural Network (Multi Layer Perceptron, MLP) 
classifier.  For the MPL we use one hidden layer and the number of hidden nodes 
found by cross-validation. We use a single output node with a logistic sigmoid 
activation function, which allows us to interpret the output (classification result) as 
posterior probabilities [15]. The kNN classifier was evaluated with different numbers 
of neighbours, i.e. 1-, 3-, 5-, 7-, 9-NN, using a Euclidean distance measure [16].  

The five-fold cross-validation scheme was used to train and evaluate the classifiers. 
To find the feature combination that gives the highest classification rate we used 
forward inclusion and backward elimination. For the MLP, each feature combination 
was trained five times with random initialisations of weights, and the best “net” was 
then used. This is done to avoid local minima. The MLP was trained using the 
Levenberg-Marquardt algorithm [17]. 
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We used the t-test to see whether the architectures were significantly different with 
a 95% confidence interval according to (6): 
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where K is the number of folds in the cross-validation and µi, σi and µj, σj are the 
average and standard deviation of the i and j classifiers.  

We do normalisation by “standardization” where all variables are standardized to 
have zero mean and unit variance, see (7) 
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Only correctly segmented crops were used to train the classifiers (class 1 crops). 

The number of weeds used was reduced so that the number of weeds and crops was 
about the same.  
 
G. Combining context and plant features  
 

If different classifiers offer complementary information about the classes, 
combining these classifiers may increase the correct classification rate [18-19]. The 
goal is to find a scheme of combining these classifiers so that the complementary 
information can be harnessed. 

In this paper we use two ways of combining the information from the context 
method and the individual plant feature classifiers (IPC): one parallel and one 
sequential. Depending on the output from the classifiers there are different ways of 
combining them. In our case, the output from the classifiers, the estimation of the 
posterior probability of being a crop P(crop|IPCfeatures), is made binary by a threshold: 
0 for weed and 1 for crop. 

The sequential combination is an extension of the context classifier described in 
section II.D. The problem with the context method is that it fails to locate the grid at 
higher weed pressures. Therefore, the idea in the sequential combination is that the 
individual plant classifier (IPC) removes as many weeds as possible, i.e. it works as a 
weed filter while leaving possible crop candidates to the context method. As 
mentioned above, the output of the classifier is made binary by a threshold for being a 
crop candidate. The reason for doing this is that we want to remove as many weeds as 
possible, because each weed that is not removed interferes with the grid matching of 
the context method. Removing as many weeds as possible, with a minimum reduction 
of crops, boosts the performance of the context classifier. 

A second reason for using a threshold for the plant being a crop candidate is the 
following. If a weed is standing at the crop position because of low emergence, as in 
Fig. 2, where the third Gaussian bell (marked as an ellipse) contains a single weed at 
the crop position, the context method will classify it as a crop if a threshold for being 
a crop candidate is not applied. However, applying a threshold for being a crop 
candidate  after the context classification will most likely also remove some crops, see 
example Fig. 6, where weed No. 1 is better positioned than the crop and thus has a 
higher total probability of being a crop, Ptotal(crop) = P(crop|IPCfeatures)*P(crop|x,y). 
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There, P(crop|x,y) is the position probability estimated by (3) when the grid is found, 
i.e. p(x,y|gGridPosition). This example corresponds to the situation in the fourth Gaussian 
bell in Fig. 1 where a weed is better placed than a crop. For these two reasons, 
boosting the performance of the context classifier and reducing the risk of removing 
crops by applying a threshold for being a crop candidate after the context method, we 
use a threshold for being a crop candidate on the IPC output. 

Using a threshold on the IPC output has the consequence that a crop classified as a 
weed by IPC can thus not be correctly classified by the context method. This kind of 
error made by IPC can not be corrected by the context method. However, a weed 
wrongly classified as a crop by IPC can be corrected by the context method if the 
weed is not located on the crop grid, like weed No. 2 in Fig. 6, or if a real crop is 
better placed than the weed, like weed No. 4 in Fig. 6.  

For reasons of comparison, we also investigate a parallel combination. In the 
parallel case each classifier uses its own representation of the input pattern, i.e. the 
context method uses plant position and the plant feature classifier uses the individual 
plant feature of each plant. We use a majority vote schema to combine the classifiers 
and implement them as an AND-operator.  

 
III. RESULTS 

 
A. Context method 
 

The classification results for the context method are shown in Tables 7 and 8. The 
results of crop classification are shown for each crop class, defined in section II.C. 
When the context method is used all plants have the same probability of being a crop. 
This means that the method is sensitive to high weed pressure and the emergence of 
crops. The emergence is about 70% in both datasets, but the weed pressure is much 
higher in dataset 2. In dataset 1 94% of the crops were found, as compared to 61% in 
dataset 2. The reason for this is that the high weed pressure makes the crop structure 
disappear among the weeds, i.e. the grid is not found. Table 9 lists the number of 
correct grid matches. The definition of a grid match is when a majority of the actual 
crops in the grid is found. If the image contains one or two crops, all crops must be 
found for a definition of a grid match and, if the image contain three or more crops, 
only one crop can be missed for a definition of a grid match, see Table 9. In dataset 2 
only half of the matches occur as compared to 92% for dataset 1. It is evident from the 
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Fig. 6. In the first bell a weed (white) is better placed than a crop (black) and selected to be a 
crop by the context method even if it has a lower prior probability to be a crop estimated by 
IPC, P(crop|IPCfeatures)<0.5. This is avoided by removing all plants with a low probability of 

being a crop. 
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results in Table 8 that the context method does not work for higher weed pressures.  
However, for lower weed pressures, as in dataset 1, it works with one major 
drawback; many weeds are still left, about 40%. The remaining weeds are mostly 
located at crop positions, see Table 10, missing crop, where the crop did not grow 
(weed at missing crop). That only 10% of the weeds are classified as crops is caused 
by a weed in a better position than a crop (crop/weed error), see Fig 1. Half of these 
crop/weed errors are caused by a failure in grid matching. The grid match error is also 
the cause of one third of the crop errors (Table 10). The rest are due to a crop/weed 
error, as mentioned above.  

To conclude, the context method is a robust method when the weed pressure is low 
and/or the emergence is high. 
 

TABLE 7.  
RESULT OF CONTEXT METHOD DATASET 1. 

Type Classified as Crop Classified as Weed Classification rate 
1 355 23 93.9% 
2 19 4 82.6% Crop 
3 50 6 89.3% 

Weed 148 266 64,3% 
Crop 1 + weed   78.4% 

 
TABLE 8.  

RESULT OF CONTEXT METHOD DATASET 2.  
Type Classified as Crop Classified as Weed Classification rate 

1 85 54 61.1 % 
2 27 23 54.0 %  Crop 
3 8 2 80.0 % 

Weed 135 693 83.7 % 
Crop 1 + weed   80.5 % 

 
TABLE 9.  

GRID FOUND DEFINED AS THE NUMBER OF CROPS FOUND COMPARED TO THE ACTUAL 
NUMBER OF CROPS.  

Grid 
Match 

1/1 2/2 2/3 3/4 4/5 Total 

Dataset 1 12/17 19/20 38/40 45/48 18/18 132/143 
Dataset 2 1/1 1/8 8/13 12/20 6/12 28/54 

 
TABLE 10.  

WEED AND CROP ERROR ANALYSIS OF DATASET 1 AND CLASS 1 CROP. 
 Total Caused by grid error 
Weed at missing crop 133 21 
Crop/weed error 15 7 
Crop error (class 1) 23 8 

 
B. Individual plant features 
 

There were no large differences between the different architectures of the MLP and 
kNN. In most cases there were no significant differences between the number of 
hidden nodes used or the number of neighbours used, even if the number of features 
used differs in some cases. However, the best classifier for each classifier type was 
chosen so that redundant features were removed, thus selecting the feature 
combination that performs significantly best with a minimum number of features. The 
results of the classifiers chosen, one classifier from each classifier type, are shown in 
Tables 11 and 12. For dataset 1 (Table 11) best classifiers are the MLP 4 (four hidden 
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nodes) and the 5-NN. The Gaussian classifier let most of the crops remain while only 
removing 65% of the weeds, as compared to the other classifiers, which remove 
almost 90% of the weeds. The Gaussian classifier shows similar results as the context 
method in Table 7. For dataset 2 there are no significant differences between 
classifiers. 

 
TABLE 11.  

RESULTS USING PLANT FEATURES DATASET 1. 
Classifier 
[Features] Type Classified as crop Classified as weed Class. rate 

1 354 24 93.6% 
2 20 4 83.3% Crop 
3 49 23 68.1% 

Gauss 
[7,1,5,13,8] 

Weed 144 270 62.5% 
Crop 1 + weed    78.8% 

1 329 49 87.0% 
2 20 4 83.3% Crop 
3 49 23 68.1% 

5-NN 
[7,3,6,11,15] 

Weed 52 362 87.4% 
Crop 1 + weed    87.2% 

1 340 38 89.9% 
2 19 5 79.2% Crop 
3 44 28 61.1% 

MLP 4 
[7,3,13,11,14,8] 

Weed 49 365 88.2% 
Crop 1 + weed    89.0% 

 
TABLE 12.  

RESULTS USING PLANT FEATURES DATASET 2. 
Classifier 
[Features] Type Classified as crop Classified as weed Class. rate 

1 133 6 95.7% 
2 44 6 88.0% Crop 
3 14 6 70.0% 

Gauss 
[7,4,11,14] 

Weed 39 789 95.3% 
Crop 1 + weed    95.3% 

1 132 7 95.0% 
2 37 13 74.0% Crop 
3 5 15 25.0% 

5-NN 
[3,6,12,11,15] 

Weed 42 786 94.9% 
Crop 1 + weed    94.9% 

1 135 3 97.1% 
2 38 12 76.0% Crop 
3 11 9 55.0% 

MLP 2 
[7,1,11,14,19] 

Weed 61 767 92.6% 
Crop 1 + weed    93.4% 

 
We use in total 19 features (six colour, seven shape, six moments), see Appendix. 

The most common features used for both datasets and all classifiers are area and 
solidity, both in five of six cases.  The area can be explained by the fact that there are 
often many small weeds, given the average weed size to be smaller than crops. The 
single classification rate for area and solidity is 73.2% and 58.7% for dataset 1 and 
91.2% and 65.4% for dataset 2, respectively. As we pointed out in [3] colour is an 
important feature and, here, at least one of the colour features is used in all the 
selections of classifiers. Using colour alone, a classification rate of 80% was reached 
for both classifiers. 

The features used by at least one classifier for each datasets are green mean and red 
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mean, blue STD, area, solidity, moment1 and moment2. To conclude, using individual 
plant features, a high correct classification rate can be achieved, for datasets 1 and 2 
89.0% and 94.9% respectively. Even if the individual plant classifier achieves a high 
correct classification rate, it has a drawback: it must be properly trained to achieve 
these results. Variations in plant appearance in and between fields could easily reduce 
the performance of a classifier trained offline. Thus, classifiers trained offline can be 
enhanced by online adaptation.  
 
C. Combining of context and plant features 

 
 Both parallel AND and sequential combination were tested for dataset 1. The context 

method was unable to locate the grid for dataset 2 because of high weed pressure, and 
the results of the AND combining for dataset 2 are thus not shown. The results of the 
combinations are shown in Tables 13 and 14. Even for dataset 1 (Table 13) it is shown 
that the sequential combination of classifiers is a slightly better approach than the 
parallel AND combination, although there is an improvement of 1-2% using parallel 
AND over using IPC alone, see Tables 11 and 13. With sequential combination, the 
classifiers increase the overall classification rate, depending on which IPC is used, by 
3 to 8% for dataset 1 and 3 to 4% for dataset 2, as compared to using IPC only. The 
best combined classifier for dataset 1 is the MLP classifier, with a classification rate 
of 91.9%. For dataset 2, the best combined classifier is the 5-NN classifier, with a 
classification rate of 98.4%. 

After combining, there is less difference between the classifiers as compared to the 
results in the case using the IPC only. The reason for this is that the feature classifiers 
perform differently in the classification of weeds. When the context classifier is 
added, a further reduction of weeds is achieved, and the difference thus becomes 
smaller. 

The grids found, i.e. the number of grid matches, increase if the number of crops is 
detected by IPC. The number of times the correct grid is found is a crucial 
performance measure of the context method and the sequential combination. Tables 
15 and 16 show the number of grids found and the number of grids found for images 
containing three crops or more (in parentheses). The grids found are about 90% in 
most cases and increase by 2-3% if only images with three or more crops are 
included. Compared to the context method only, there is a small performance drop in 
grids found for dataset 1. This is because some crops are classified as weeds by IPC, 
causing the grid match to fail. The drop in performance is greater if all images are 
included as compared to counting images that contain three crops or more. Still, errors 
caused by a failure in grid match are fewer than those caused by the IPC. Higher 
emergence of crops and more correctly segmented crops will reduce these grid errors 
even further.  

Tables 15 and 16 also give an error analysis of the crops and weeds that are wrongly 
classified after the sequential combination. In most cases, weeds are classified as 
crops because of a missing crop (weed at missing crop), see Fig 2. Only a few 
misclassifications are interchanges between crops and weeds when a weed is better 
positioned in the grid (crop/weed error). There is no crop/weed error for dataset 2, 
which shows the advantage of using context to recognize and locate crops and weeds. 
The context method removes 50-80% of the weeds while it leaves most of the weeds 
that are at a position where a crop should have grown up. Weeds that remain are thus 
standing at a position where they interfere least with the crops from a nutriment point 
of view. The crop errors in Tables 15 and 16 are crop/weed errors as mentioned 
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above, and errors caused by a misplaced crop. The majority of the crop error is caused 
by the IPC classifying a crop as a weed. 

 
TABLE 13.  

RESULTS USING COMBINING CLASSIFIERS DATASET 1. 
  Sequential AND 

Classifier Type C.Ca C.W R. % C.C C.W R. % 
1 346 32 91.5 336 42 88.9 
2 17 7 70.8 16 8 66.7 Crop 
3 38 34 52.8 35 37 48.6 

Gauss 

Weed 68 346 83.6 59 355 85.7 
Crop 1 + weed (IPC only: 78.8) 87.4   87.2 

1 324 54 85.7 312 66 82.5 
2 18 6 75.0 17 7 70.8 Crop 
3 42 30 58.3 38 34 52.8 5-NN 

Weed 24 390 94.2 19 395 95.4 
Crop 1 + weed (IPC only: 87.2) 90.1   89.3 

1 337 41 89.1 322 56 85.2 
2 16 8 66.7 15 9 62.5 Crop 
3 34 38 47.2 32 40 44.4 MLP 4 

Weed 23 391 94.4 21 393 94.9 
Crop 1 + weed (IPC only: 89.0) 91.9   90.3 

aC.C = Classified as crop, C.W = Classified as weed, R. = Class rate. 
 

TABLE 14.  
RESULTS USING COMBINING CLASSIFIERS DATASET 2. 

  Sequential 
Classifier Type Classified as crop Classified as weed Class rate 

1 131 8 94.2% 
2 41 9 82.0% Crop 
3 9 11 45.0% 

Gauss 

Weed 10 818 98.8% 
Crop 1 + weed (IPC only: 95.3 %)  98.1% 

1 131 8 94.2% 
2 37 13 74.0% Crop 
3 5 15 25.0% 5-NN 

Weed 7 821 99.2% 
Crop 1 + weed (IPC only: 94.9 %)  98.4% 

1 130 9 93.5% 
2 38 12 76.0% Crop 
3 8 12 40.0% MLP 2 

Weed 17 811 97.9% 
Crop 1 + weed (IPC only: 93.4 %)  97.3% 

 
TABLE 15.  

WEED AND CROP ERROR ANALYSIS DATASET 1 (CLASS 1 CROP). 
 Error type Total Caused by grid error Grid found 

Weed at missing crop 50 13 
Crop/weed error 7 9 Gauss 
Crop error 32 5 

127/143 
(98/106)a 

Weed at missing crop 21 3 
Crop/weed error 3 2 5-NN 
Crop error 51 4 

117/143 
(87/106)a 

Weed at missing crop 19 2 
Crop/weed error 4 2 MPL4 
Crop error 37 2 

126/143 
(99/106)a 

a Counting only images containing three crops or more. 
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TABLE 16.  
WEED AND CROP ERROR ANALYSIS DATASET 2 (CLASS 1 CROP). 

 Error type Total Caused by grid error Grid found 
Weed at missing crop 10 3 
Crop/weed error 0 0 Gauss 
Crop error 8 1 

 44/54 
(42/45)a 

Weed at missing crop 7 1 
Crop/weed error 0 0 5-NN 
Crop error 8 0 

 49/54 
(41/45)a 

Weed at missing crop 17 4 
Crop/weed error 0 0 MLP 2 
Crop error 9 2 

 50/54 
(42/45)a 

a Counting only images containing three crops or more. 
 

IV. DISCUSSION 
 
The three main factors that influence the performance of the recognition and 

localisation of crops are the emergence of the crops, weed pressure and the stage of 
growth of crops. The emergence of crops has an impact only on the context method, 
while the two others have an impact on both classifiers. High weed pressure causes 
more plants to grow together and makes the segmentation more difficult, i.e. getting 
correctly segmented plants. It is difficult or even impossible to match in the context 
method because the crop grid “disappears” among the weeds. If crops are larger, the 
segmentation becomes less complex, as in dataset 1, and with less complexity there 
are fewer errors, i.e. larger plants are often segmented into one object while smaller 
plants often consist of multiple objects that must be merged. 

When the classifiers are combined in sequence, the context method is able to handle 
higher weed pressures in our case up to 400 weeds/m2. However, this depends on how 
successful classification of the individual plant classifier is. For both datasets the k-
NN and MLP show an advantage over the Gaussian classifier. The drawback of the 
individual plant feature method is that the classifier must be trained before use. 
Variations in plant size and weed species within and between fields and during the 
season call for some type of unsupervised or reinforcement learning to make 
classifiers adaptive to these variations. The context method is more robust to these 
variations and could therefore be used to train the feature classifier. 

The performance of the context method also depends on how accurately the crop 
row is followed. As pointed out in paper [2], compensating for these errors can 
improve the classification rate by 2% for dataset 1, as an example. If the precision in 
sowing is increased the Gaussian bells could be smaller and thus increase the 
robustness against high weed pressure and reduce the probability that weeds will be 
accepted at missing crop positions.  Further improvement can be achieved by 
increasing the number of bells used for grid matching [2]. The number of bells used is 
limited by the fact that the crop distances can vary as a result of imprecise sowing 
causing shifts in the crop pattern that disturb the matching. More bells also require 
longer initialisation, i.e. a longer distance must be travelled before a match can be 
achieved. An alternative approach toward enhancing the performance of the grid 
matching is to track the grid by estimating the distance travelled between consecutive 
images (samples of the row structure) and thus achieving an estimate of the expected 
crop position P(gi), see (3). A tracking approach is suggested by [20], and these 
authors used an extended Kalman filter to track the model of the crop pattern.  

Combining classifiers in sequence shows a clear advantage over the parallel AND 
approach. The reason for this is that the individual plant classifier boosts the 
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performance of the context classifier. The main drawback of the suggested combining 
schema is that the performance depends on how well the feature classifier recognizes 
crops. However, when the weed pressure is low, the feature classifier could be tuned 
to accept more plants as crops, see Table 17, at the cost that more weeds are classified 
as potential crops. In the example in Tables 17 and 18, the tuning is achieved by 
changing the degree of confidence of a 5-NN classifier, i.e. the number of neighbours 
to be classified as a crop. 20% confidence means that least one of the five neighbours 
must be a crop to be classified as a crop. For dataset 1, the confidence should be set to 
40%, which implies a 4% increase in crops found compared to use a confidence of 
60%, which is used in Section III. For higher weed pressures, as in dataset 2, it may 
be necessary to remove as many weeds as possible to boost the context classifier. As 
seen in Table 18, reducing the confidence to 40% does not increase the number of 
crops found. For dataset 2, a 60% confidence is recommended. The confidence can 
not be reduced and an increase in confidence does not significantly decrease the 
number of remaining weeds. 

 
TABLE 17 

PERFORMANCE OF 5-NN CLASSFIER WITH DIFFERENT DEGREES OF CONFIDENCE 
(DATASET 1). 

Degree of confidence % 0a 20 40 60 80 100 
Crop 378 359 343 329 285 209 Plant 

Feature Weed left 414 188 105 52 25 10 
weed/crop ratio 1.10 0.52 0.31 0.16 0.09 0.05 

Crop 355 348 337 324 284 209 Sequence Weed left 148 81 48 24 12 4 
weed/crop ratio 0.42 0.23 0.14 0.07 0.04 0.02 

a 0% confidence is analogous to the context method. 
 

TABLE 18 
PERFORMANCE OF 5-NN CLASSFIER WITH DIFFERENT DEGREES OF CONFIDENCE 

(DATASET 2). 
Degree of confidence % 0a 20 40 60 80 100 

Crop 139 134 132 132 132 125 Plant 
Feature Weed left 828 214 105 42 22 9 
weed/crop ratio 5.96 1.60 0.80 0.32 0.16 0.07 

Crop 78 115 126 131 131 124 Sequence Weed left 151 56 25 7 5 4 
weed/crop ratio 1.94 0.49 0.20 0.05 0.04 0.03 

a 0% confidence is analogous to the context method. 
 

V. CONCLUSIONS AND FUTURE WORK 
 
In this paper we present a method that addresses the problem of recognition and 

localisation of plants in row-cultivated crops. The proposed method combines 
geometrical features of the scene (context) with individual plant features. The 
advantage of using context, i.e. the crop pattern, is that this feature is stable to within 
and between field variations in crop appearance and weed species. The drawback is 
that, if the emergence is low, there will be weeds standing at crop positions that will 
be treated as crop. Another drawback is that when the weed pressure is high the crop 
pattern will disappear among the weeds, which causes the context method to fail. To 
address these two problems we combine the context classifier with a classifier that 
uses individual plant features, e.g. colour and shape features.  

The methods have been evaluated on two datasets of sugar beets at different stages 
of growth. We tested three different types of classifiers for individual plant features: 
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Gaussian quadratic, k-Nearest Neighbour (kNN) and an Artificial Neural Network 
(Multi Layer Perceptron, MLP) classifier. For dataset 1 the k-NN and MLP show an 
advantage over the Gaussian classifier, and the best classification rate for datasets 1 
and 2 was 89.0% and 94.9% respectively. The most important features were area and 
solidity, and at least one colour feature was used in all selected classifiers.  

We have shown that a sequential combination of geometrical features and 
individual plant features is preferable to a majority vote combining (in this case a 
logical AND). The idea behind the sequential combination is that the individual plant 
classifier removes as many weeds as possible, i.e. it works as a weed filter, while 
leaving possible crop candidates to the context method. Combining the classifiers 
increases the overall classification rate, depending on which individual plant feature 
classifier is used, by 3-8% for dataset 1 and 3-4% for dataset 2 as compared to using 
individual plant features only. The classification rate for the combining was at best 
91.9% for dataset 1 and 98.4% for dataset 2. The advantage of combining the context 
method with individual plant features is that the context method can handle higher 
weed pressures, in this case up to 400 weeds/m2. Another advantage of the proposed 
method is that most of the weeds not recognized are located where a crop should have 
grown, and are thus located at positions where they interfere least with the crops from 
a nutriment point of view. 

A problem that increases with higher weed pressures is the increasing number of 
occluded plants, causing more segmentation errors. This problem is not fully 
addressed in this paper and will be a subject for further work. Further work will also 
investigate the number of Gaussian bells used by the context method to match the 
crop grid pattern. A preliminary investigation shows that adding more bells would 
give a further increase of robustness against higher weed pressures. The algorithms 
will also be implemented on the weeding robot described [3] and evaluated in the 
field.  

Even if the individual plant classifier achieves high classification results, it has a 
drawback: it must be properly trained to achieve these results. Variations in plant 
appearance within and between fields could easily reduce the performance of a 
classifier trained offline. The long term goal is to make the method adaptive, meaning 
that all parameters necessary for successful discrimination between crops and weeds 
should be automatically identified and updated. This will make the method more 
robust to within field and between field variations in the weed pressure and in plant 
appearance. The algorithm presented in this paper is a first step toward reaching that 
goal in the sense that the planting geometry is less affected by those variations. 
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APPENDIX 
 
The definition of form factor is that it is a measure of how much "plant mass" there 

is in the centre in relation to how much "plant mass" there is in the periphery. 
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TABLE A1.  
LIST OF FEATURES. 

 
# Name Description 
1 green mean The mean value, over the whole plant, of the normalised 

green colour, g = G/(R+G+B). 
2 green std The standard deviation, over the whole plant, of the 

normalised green colour. 
3 red mean The mean value, over the whole plant, of the normalised 

red colour, r = R/(R+G+B). 
4  red std The standard deviation, over the whole plant, of the 

normalised red colour. 
5 blue mean The mean value, over the whole plant, of the normalised 

blue colour, b = B/(R+G+B). 
6 blue std The standard deviation, over the whole plant, of the 

normalised blue colour. 
7 area Area is defined as the number of pixels belonging to the 

plant 
8 perimeter Perimeter is defined as the number of pixels of the plant 

boundary. 
9 compactness area/perimeter2 
10 elongation area/thickness2, where thickness is defined as the number 

of shrinking steps of an object until only one pixel is left 
in the image. 

11 solidity area/(area of convex hull), where convex hull is described 
as the area formed if a rubber band would be tighten 
around the object. 

12 formfactor See the definition above in this appendix. 
13 convexity perimeter/(perimeter of convex hull) 
14 moment1 
15 moment2 
16 moment3 
17 moment4 
18 moment5 
19 moment6 

These are functions of moments, which are invariant to 
geometric transformations such as translation, scaling and 
rotation. Defined in (Jain, 1989). 

 


