Nitrogen management strategies in organic seed production of Timothy (*Phleum pratense* L) and Festulolium (*Festuca arundenacea* x *Lolium multiflorum*)

Ann-Charlotte Wallenhammar^{1,3}, Eva Stoltz¹ and Åsa Käck²

¹HS Konsult AB, PO Box 271, SE 701 45 Örebro, ²HS Väst, Vänersborg, ³SLU, Department of Soil and Environment, Precision Agriculture and Pedometrics, Skara, Sweden

Introduction

Organic seed production has increased in Sweden during the past ten years, and constitutes more than 20 % of the total herbage seed acreage. The availability of N during important stages of crop development is detrimental for the final yield. Several organic fertilizers are available on the market for organic crop production. The objective of this study was to investigate the effects of different N strategies and the efficiency of organic N fertilizers in seed crops of timothy and festulolium.

Method

Four field experiments of timothy and four of festulolium were conducted in central Sweden (58°-59° N) 2008-2010. Four amendments were used; Vinass, a liquid by-product from yeast production, Biofer 10-3-1, a pelleted product of meat and bone meal, dairy slurry and biogas slurry from household compost. In timothy, 50 kg ha⁻¹ N and 90 ha⁻¹ N were applied at the onset of regrowth in late April. In festulolium, the amendments were applied at a rate of 60, 80 and 100 kg ha⁻¹ N early in April and in treatment E and I 140 ha⁻¹ N was applied in September (Table 1 and 2).

<i>Table 1.</i> Means of seed yield, lodging and number of ears in four field experiments of timothy (first year seed crops), 2008-2009						Table 2. Means of seed yield. Lodging and number of ears in one experiment of festulolium cv Hykor (first year seed crop), Skänninge				
Treatment (kg ha ⁻¹ nitrogen and time of application)	Yield 15% wc (kg ha ⁻¹)	Rel yield	Lodging (0-100)	Ear (no.m ⁻²)	i.	Treatment (kg ha ⁻¹ nitrogen and time of application)	Yield 15% wc (kg ha ⁻¹)	Rel yield	Lodging (0-100)	Ear (no. m ⁻²)
A. Unfertilized	415 d	100	0	465		A. Unfertilized	228 e	100	0 f	1103 c
B. Dairy slurry 50 NH ₄ -N spring	623 abc	150	2	657		B. Vinass 60 N autumn + 60 N spring	608 c	267	42 b	1226 bc
C. Dairy slurry 90 NH ₄ -N spring	690 a	166	15	731		C. Vinass 60 N autumn + 80 N spring	751 ab	330	69 a	
D. Biofer 10-3-1 50 N spring	572 c	138	6	655		D. Vinass 60 N autumn + 100 N spring	635 b	279	72 a	
E. Biofer 10-3-1 90 N spring	619 abc	149	9	626	1	E. Vinass 140 N autumn	796 a	350	40 b	1621 a
F. Biogas slurry 50 N spring	574 bc	138	12	527	R	F. Biofer 10-3-1 60 N autumn + 60 N spring	459 cd	202	6 ef	
G. Biogas slurry 90 N spring	677 ab	163	47	578	14	G. Biofer 10-3-1 60 N autumn + 80 N spring	430 d	189	9 e	
H. Vinass 50 N spring	598 bc	144	11	608	100	H. Biofer 10-3-1 60 N autumn + 100 N spring	567 b	249	16 d	1493 ab
I. Vinass 90 N spring	614 abc	148	41	685	11	I. Biofer 10-3-1 140 N autumn	680 abc	299	24 c	
CV, %	10.3		25.5	17.6	1	CV, %	16.9		7.0	9.3
Prob F1	0.0001		NS	NS		Prob F1	0.0001		0.05	0.05
LSD F1	90					LSD F1	141		7	324

Results

In timothy the highest yield was received at 90 ha⁻¹ N as dairy slurry, however, it was not significantly different from the other treatments at the same rate. In the first year seed crop of Hykor the highest yield was received at a rate of 140 N ha⁻¹ as Vinass applied in autumn, whereas in the second year seed crop the highest yield was found at 80 N ha⁻¹as Biofer 9-4-0 in autumn and 100 N ha⁻¹ as Vinass in spring (results not shown here).

Conclusions

- All amendments increased seed yield significantly in both timothy and festulolium.
- There was an overall tendency that spring application of Biofer was less effective than Vinass.
- High rates in autumn (80-140 N) are preferably applied in festulolium.
- The N-uptake is efficient as the levels of soil mineral N at harvest were low (10-15 kg N ha⁻¹).