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Abstract 

A Swedish field trial database was mined for information on economically optimal nitrogen 

rates (EONR). One hundred wheat (Triticum aestivum L.) trials and 47 barley (Hordeum 

vulgare L.) trials in Sweden were used to parameterize prediction models for EONR. Input 

data to the models were the yield in plots without any nitrogen (N) fertilization, intended to 

reflect N mineralization, and the yield in plots with a high N rate, intended to reflect the yield 

potential. An independent validation showed that the prediction models can be expected to 

predict EONR with a mean absolute error (MAE) <11 kg N / ha for wheat and a 

MAE < 10 kg N / ha for barley when applied for new sites and years. Simple experiments 

with two N levels were suggested as a tool to optimize the N fertilization, for example as a 

complement to the currently performed N fertilization trials to improve the spatial 

representation. There is also potential to use the model together with optical sensors for in-

season EONR predictions at the time for fertilization. A large variation in EONR among sites 

and years confirmed that it is important to adapt the N fertilization rate to local and current 

conditions in order to minimize environmental risks and to improve the profit of N 

fertilization. 

Keywords Nitrogen; economically optimal fertilization rate; barley; Hordeum vulgare; 

wheat, Triticum aestivum; empirical model; data mining 
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1. Introduction 

Crops respond to nitrogen (N) application with increased yield up to a limit when other 

factors limit growth. The economically optimal N rate (EONR) is determined as the 

fertilization rate where the slope of the response curve equals the prize ratio of the fertilizer N 

and the produced grain. Suboptimal fertilization means that the production potential is not 

exploited, while super optimal fertilization result in a poor profit because of high fertilization 

costs in relation to the income from the produced grain. EONR is also a threshold for 

increased environmental risks. Lord & Mitchell (1998) found that fertilization rates above 

EONR caused increased leaching and Delin & Stenberg (2010) confirmed the results in 

Swedish experiments. Both studies found that the leaching is not linearly related to the N 

rate. The nitrate leaching show a weak trend in relation to N for N rates < EONR and a strong 

accelerating trend in relation to the amount of applied N for N rates > EONR. Thus, it is 

crucial also from an environmental perspective not to exceed EONR. Tools for local 

predictions of EONR are necessary to enable optimal fertilization. 

Raun et al. (2011) demonstrated that EONR is poorly correlated with yield and Scharf et al 

(2006) concluded that variation in EONR was to a large extent due to variations in soil N 

supply and N uptake efficiency. Scharf et al (2006) also calculated that variable rate 

application of N to corn (Zea mays) was much more profitable when the decision support was 

based on yield and soil N supply together (profit 38$ ha-1) compared to when it was based on 

yield alone (profit 2$ ha-1). This leads us to believe that soil N supply and crop yield potential 

would be good proxy variables for EONR prediction. These can be represented by 1) yield 

without N fertilization and 2) yield where N is not limiting to growth. 

Today, recommendations for the N fertilization rate are based on a limited number of N 

fertilization trials with several N levels (usually 4-7) and usually with four replicates. 
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However, the spatial variation in EONR is expected to be large. The soil N supply by 

mineralization depends on soil type (Delin and Lindén, 2002) and the variation between and 

within fields can be > 100 kg N ha-1. Also crop yield, has been demonstrated to vary 

considerably, by several tonnes ha-1, within Swedish fields (Algerbo et al., 2003). With the 

present experimentation to support the advisory services, EONR is determined with high 

precision at the sites where the experiments are conducted but are not always representative 

for other farms or fields. Simple experiments for local determination of EONR could 

potentially constitute a valuable supplement to the currently performed experiments. For this 

to be doable, the experiments must be simplified but what is lost in precision (how well 

EONR is predicted) should be more than gained in better representativeness, as the 

experiments are performed locally. 

We propose a method to predict EONR for winter wheat (Triticum aestivum L) and barley 

(Hordeum vulgare L.) from N fertilization trials with only two N levels. One level 

(0 kg N / ha) will give an indication of the soil N supply and the other level (an N rate not 

limiting to growth) will give an indication of the yield potential. The method capitalizes on a 

field trial database and the idea is simple: EONR is calculated for each experiment in the 

database and empirical prediction models are parameterized for prediction of EONR from the 

yield at the two N fertilization levels. 

An important note here is that the yield in the experimental plots is not known at the time for 

fertilization so if fertilization is to be based on current year experiments, the yield in the plots 

has to be estimated, e.g. by use of an optical sensor, and this would decrease the accuracy of 

the two-level N trials. 
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The purpose of this study was threefold: 

1. To examine the magnitude of the variation in EONR, soil N supply (yield without N 

fertilization) and yield potential (yield without N limitation) between years and 

between experimental sites. 

2. To validate the proposed method to predict EONR from yield at two N fertilization 

rates and a national prediction model calibrated with a field trial database. 

3. To estimate how much the accuracy of the predictions is deteriorated by errors in 

input data, i.e. to simulate prediction accuracy when using sensor based yield 

estimates at the time of fertilization  instead of measured yield at the time of harvest.  

2. Materials & methods 

Field trial data 

A subset of data from the Swedish field trial database (Field Research Unit, Swedish 

University of Agricultural Sciences) consisting of 100 wheat trials and 47 barley trials were 

used. The wheat trials were conducted 1999-2011 and the barley trials were conducted 2002-

2011. The selection criteria listed below were applied. No restrictions were made on cultivar 

or N strategy (number of fertilization times –only the total amount of N was considered). For 

agronomic details of the individual experiments, search the field trial database of the Field 

Research Unit at the Swedish university of agricultural sciences (www.ffe.slu.se). Each 

experiment has a unique Adb-number that cn be used in the query. Included Adb numbers are 

listed in Appendix 1.  

Barley:  

 Highest N rate at least 160 kg N / ha 

 0 kg N / ha < EONR < 160 kg N / ha 
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 At least four N levels 

 Positioned 

Winter wheat: 

 Highest N rate at least 180 kg N / ha 

 0 kg N / ha < EONR < 300 kg N / ha 

 At least four N levels 

 Cereals as precrop 

 Positioned  

EONR calculation 

A second grade polynomial (Equation 1) was fitted for each trial and EONR (Equation 2) was 

determined as the N rate where the derivative of equation 1 equalled the price ratio of the 

fertilizer N and the produced grain. This means that at EONR the cost for additionally applied 

N equals the economic value of the resulting increase in grain yield. At higher N rates any 

extra N added would not result in a yield increase that would cover the cost of that N and at 

lower N rates the yield potential would not be utilised. We used a prize ratio of 10 as a case 

study but models could be parameterized for other prize ratios as well.  

 

Grain yield = i + j × N rate + k × (N rate)2    Equation 1 

 

	ܴܱܰܧ ൌ ௉௥௜௖௘	௥௔௧௜௢ି௝

ଶ௞
       Equation 2 
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Study design 

First, five different predictor sets were evaluated for EONR prediction (yield without N 

fertilization (Y0) + yield at five different N rates supposed to be non-limiting to growth). 

Then, effects of error in input data (4 error levels) were simulated for the best predictor set 

for each crop. Empirical prediction models (multivariate adaptive regression splines; 

MARSplines) were calibrated for different predictor sets and error levels and validated by the 

mean absolute error (MAE) and the modelling efficiency (ME). 

Evaluating predictor sets 

The present study aimed to evaluate empirical prediction models of EONR based on yield. In 

two experimental plots reflecting soil N supply and yield potential. The soil N supply was 

supposed to be reflected by Y0 but it needed to be decided which N rate that best reflected the 

yield potential. Therefore five different N rates were tested for each crop (Table 1). The 

yields at the different N rates were calculated for each experiment from the parameterized N 

response curves (Equation 1). 

Error simulation 

If empirical prediction models of EONR are to be used as decision support for fertilization 

the current year, the yield in the two experimental plots will not be known but have to be 

estimated e.g. from optical sensor measurements. This means that the accuracy of the EONR 

prediction will decrease. Therefore, for the best predictor set for each crop, four levels of 

errors were added to the validation data. The errors were randomly sampled from Gaussian 

distributions with means of zero and standard deviations that equalled 5%, 10%, 20% and 

40% of the means of the predictors. Validations were made for errors added to either one or 

to both of the predictors in the model. 
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Model calibration  

The idea of the present study was that the empirical prediction model will make use 

relationships between the soil N supply, the yield potential and the EONR that are general for 

Swedish conditions. Thus new N fertilization trials doesn´t have to have enough N-levels to 

parameterize a new N response curve.  Instead, only two essential characteristics of the site 

and the year (the soil N supply and the yield potential) has to be determined in simple trials 

with two N levels and EONR will be determined by utilizing empirical knowledge from the 

large number of previous experiments in the database, parameterized by the prediction 

models. 

MARSplines models were chosen because they are flexible and can describe non-linearities 

in relationships among variables. Another benefit of MARSplines models is that the 

calibration procedure includes a pruning step that simplifies the model equation. This 

minimizes the risk of overfitting. Overfitting means that the model is fitted to non-general 

relationships that are present only in the calibration dataset. It will make the model explain 

more of the calibration data but it is still undesirable because the predictions will be less 

accurate when the model is applied on a new datasets. The model is said to be less robust. 

In essence, a MARSplines model is the sum of a number of so-called basis functions. The 

basis functions are simple univariate linear regressions described by a slope and an intercept 

but they are only defined above or below a threshold value, a so-called knot, of the predictor 

variables. MARSplines models can be allowed to include interactions among basis functions 

but in the present study simple additive models without interactions were parameterized (also 

because of the risk for over fitting). More information about MARSplines models and the 

parameterization procedure are found in Hastie et al. (2009) and Milborrow (2013). In the 
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present study, the MARSplines models were parameterized using the statistical software R (R 

Development Core Team, 2012), package Earth (Milborrow, 2013) 

Method validation 

For a prediction model to be of any value, it has to make reliable predictions also when 

applied for new sites and years not present in the calibration dataset. Therefore a cross-

validation strategy was designed as follows: Thirteen (wheat) or ten (barley) different model 

calibrations were made. Data from one year were withheld from each calibration. Then the 

model was applied for the witheld year. It was also checked that there were no trials in the 

calibration dataset that were located close to (< 1 km) any of the trials in the validation 

dataset. If so, that trial was omitted from the calibration dataset. This procedure means that 

one prediction is made for each trial but not all predictions are made by the same model 

(thirteen different models for wheat and ten different models for barley). Thus, it is not a 

specific model that is evaluated. It rather evaluates the prediction performance of 

MARSplines models on the present dataset. After the cross-validation, however, final models 

were calibrated using all data and these can be expected to yield predictions of the accuracy 

indicated by the cross-validation when applied for new sites (in Sweden) and years.  

The error magnitude was quantified by the MAE (Equation 3) and the model performance in 

relation to using the mean EONR value of the calibration data was quantified by the ME 

(Equation 4). An ME = 0 indicate that using the model is not better than using the mean of 

the calibration data while an ME = 1 would be obtained if the model predicted all EONR 

values correctly. 

ܧܣܯ ൌ
∑|௣ି௠|

௡
       Equation 3 

ܧܯ ൌ 1 െ
∑ሺ௠ି௣ሻమ

∑ሺ௠ି௠ഥሻమ
       Equation 4 
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Results 

Quantifying variation 

It can be inferred from Figure 1 and 2 that there was a considerable variation in EONR, both 

between years (yearly averages are indicated by the line markers) and between trial sites the 

same year (each trial is marked by a hollow circle). The range of EONR for wheat was 

245 kg N / ha and the range of EONR in barley was 112 kg N / ha. 

There was likewise a considerable variation both between sites and between years for the 

yield without N fertilization, the yield at 300 kg N / ha (wheat) and the yield at 180 kg N / ha 

(barley). The ranges in yield without N fertilization were 4623 kg / ha (wheat) and 

6086 kg / ha (barley) and the ranges at the high fertilization rates were 9920 kg / ha (wheat) 

and 8945 kg / ha (barley). 

Finding the best predictors 

Validation measures for the five different predictor sets of each crop are presented in Table 2. 

For wheat, predictor set 5 (yield without fertilization together with yield in plots fertilized 

with 300 kg N / ha) had the lowest MAE and the highest ME and was judged to be the best. 

For barley, predictor set 4 (yield without fertilization and yield in plots fertilized with 

180 kg N / ha) was best on the same grounds of judgement. For the best predictor set for each 

crop, predicted values of EONR are plotted against EONR determined from the N response 

curves in Figure 3. 

Simulating effects of erroneous input data 

The results from the simulation of effects of errors in input data are presented in Figure 4. 

The errors increase rapidly with errors in input data and the models were more sensitive to 

errors in yield potential (Y300 and Y180) compared to errors in Y0.  
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Final models for EONR prediction 

The final MARSplines models for EONR prediction are given in Equation 5 (wheat) and 

Equation 6 (barley).  

EONR = 135.160907 -0.055857 max (0, Y0-3102.38)        
+0.041956  × max (0, Y0-3659.85)  
+ 0.029571  × max (0, Y300-5612.13)         Equation 5 
- 0.015401  × max (0, Y300-7597.71)  
+ 0.015352  × max (0, Y300-9761.98)      

 

EONR = 66.547604 - 0.016588  ×  max (0, Y0-3364.44)     
0.018973  × max (0, 3364.44- Y0)  
+ 0.026882  ×  max (0, Y180-3988)         Equation 6 
-0.015294  × max (0, Y180-6361)     

 

As the models are only bivariate, it was possible to visualize the Equations as surfaces 

(Figure 5).  The surfaces were curvilinear and somewhat similar for both crops. 

3. Discussion 

The large magnitude of variation in EONR indicates that recommendations for N fertilization 

based on average values would be rather erroneous for a certain site (farm/field/management 

zone) and year. It also shows that experimentation on only a few sites to support the advisory 

services would be very sensitive to where the trials are located. The presently described 

method to perform simple experiments with two N-levels could be a valuable complement to 

the experimentation with more N-levels, in order to better cover the spatial variation in crop 

N response on a national scale and to provide better advice for farmers based on local 

conditions.  

The setup of the method validation, where the calibration and the validation data are 

independent (the trials were performed different years and were never closer than 1 km), 

allows us to draw the conclusion that two-plot experiments performed at new sites and years 
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can be expected to yield EONR predictions with a MAE < 11 kg N / ha for wheat and a MAE 

< 10 kg N / ha for barley. However, the presently calibrated models should not be regarded as 

valid for all times. They should rather be regarded as ‘living models’ that are to be 

continuously updated using the lasted full N fertilization trials performed in the country, in 

order to be up-to-date regarding crop breeding and agricultural practices.  

A drawback of the method –as with all N fertilization trials- is that the EONR determination 

is based on grain yield and the yield will not be known until harvest. In order to minimize the 

environmental risk of nitrate leaching and to improve the profit, it is necessary to adjust the N 

fertilization rate both to local and to current conditions. This calls for the development of 

accurate yield prediction methods and there are already promising sensor-based methods to 

predict the yield in trial plots. For example, Overgaard et al. (2013) found that up to 94% of 

the yield variation could be predicted from hyper-spectral near infrared reflectance 

measurements in an independent validation of Norwegian field trials. This was a considerable 

improvement compared to yield predictions based on reflectance-based vegetation indices. 

The authors stressed that it was important to include several sites and years in the model 

calibration. Solie et al. (2012) fitted general yield prediction models to the NDVI of 390 N 

fertilization trials in wheat and found that yield could be predicted with coefficients of 

determination (r2) between 0.1 and 0.8, depending on growth stage. 

4. Conclusions 

The following conclusions were drawn: 

 There is a considerable variation in EONR both between sites and between years. The 

EONR for wheat differed at most 245 kg N / ha between the wheat experiments and at 

most 112 kg / ha between the barley experiments.  Also the soil N supply (measured 
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as yield without N fertilization) and the yield potential (yield without N limitation) 

varied considerably between experimental sites and years. 

 Provided that accurate input data are available, EONR can be predicted from simple 

two-plot experiments and a national prediction model calibrated with a field trial 

database with a MAE = 11 kg N / ha  for wheat and a MAE = 10  kg N / ha  for 

barley. 

 The prediction errors increased rapidly with increased error levels in the input data. 

Simulation showed that EONR predictions were more sensitive to errors in yield 

without N fertilization compared with errors in yield without N limitation. 

 The evaluated method can be used to extend the current experimentation for better 

geographical coverage. Used together with optical sensors, there is also potential to 

use the two-plot experiments for EONR prediction at the time for fertilization. 
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Table 1. Predictor sets.  Y = grain yield. Subscripts denote nitrogen (N) fertilization rate 

(kg / ha). EONR = economically optimal N rate 

Predictor  

set 

Predictors  

wheat 

Predictors  

barley 

1 Y0 + YEONR Y0 + YEONR 

2 Y0 + Y140 Y0 + Y240 

3 Y0 + Y180 Y0 + Y260 

4 Y0 + Y180 Y0 + Y280 

5 Y0 + Y200 Y0 + Y300 
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Table 2. Validation of predicitons of economically optimal nitrogen rate. Predictor sets are 

presented in Table 1.  MAE = mean absolute error, ME = modelling efficiency. Values within 

parenthesis are calculated without one outlying prediction.  

Predictor set MAE ME Predictor set MAE ME 

Winter wheat   Barley   

Set 1 15.5 (15.5) 0.84 (0.84) Set 1 13.5 0.79 

Set 2 15.4 (15.4) 0.82 (0.82) Set 2 13.0 0.82 

Set 3 13.0 (13.0) 0.85 (0.86) Set 3 11.3 0.86 

Set 4 11.5 (11.5) 0.85 (0.87) Set 4 9.9 0.88 

Set 5 11.0 (11.0) 0.86 (0.90) Set 5 13.6 0.77 
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Figure captions 

Figure 1.  Trialwise (hollow circles) and yearly mean (line markers) values of a) yield 

without fertilization, b) yield at 300 kg n / ha and c) economically optimal nitrogen rate 

(EONR) in wheat. 

Figure 1.  Trialwise (hollow circles) and yearly mean (line markers) values of a) yield 

without fertilization, b) yield at 180 kg n / ha and c) economically optimal nitrogen rate 

(EONR) in barley. 

Figure 3. Predicted values of economically optimal nitrogen rate (EONR) plotted against 

EONR determined in field trials for a) wheat and b) barley. The predictions were made by 

cross validation of models using predictor set 5 for wheat and predictor set 4 for barley. 

Figure 4. Mean absolute error (MAE) in relation to the magnitude of added errors. The added 

errors were randomly sampled from a Gaussian distribution with mean = 0 and a standard 

deviation of 5%, 10%, 20% or 40% of the average of the predictor variables. The errors were 

added to the yield in plots without fertilization (Y0), the yield in plots where N were not 

suspected to be limiting to growth  (Y300 for wheat and Y180 for barley) or to both predictor 

variables. 

Figure 5. Final multivariate adaptive regression splines models calibrated by all data. 

EONR = economically optimal nitrogen rate. 
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Appendix 1. 

List of included field trials. More information on the individual experiments can be obtained 

from the the Field trial database run by the Field research Unit at the Swedish university of 

agricultural sciences (www.ffe.slu.se). Each experiment has a unique Adb-number that can be 

used in the search function of the database. 

Adb numbers of wheat experiments:  

039884; 039887; 039888; 003A022; 03A023; 03A024; 03A025; 03A026; 03A027; 03B100; 

03B104; 03B105; 03B110; 03B111; 03B112; 03B113; 03B115; 03C035; 03C046; 03C047; 

03C048; 03C049; 03C050; 03D105; 03D107; 03D126; 03D127; 03D128; 03D130; 03D163; 

003E075; 03E078; 03E079; 03E080; 03E0103; 03E0104; 03E0105; 03E0106; 03E0107; 

03F008; 03F009; 03F010; 03F011; 03F012; 03F092; 03F094; 03F095; 03G010; 03G014; 

03G023; 03G024; 03G027; 03H015; 03H017; 03H018; 03H019; 03H091; 03H092; 03H094; 

03H096; 03H097; 03H102; 03K016; 03K020; 03K082; 03K088; 03K089; 03K091; 03K092; 

03L020; 03L022; 03L024; 03L109; 03L110; 03L111; 03L112; 03L113; 03L114; 03L116; 

03L118; 03L119; 03L120; 03M081; 03M083; 03M084; 03M088; 03M091; 03M092; 

03M093; 03M094; 03M095; 03M097; 03M098; 03M099; 03N089; 03N091; 03N092; 

03N098; 03N099; 03N101 

Adb numbers of barley experiments:   

03C040; 03C042; 03D091; 03D092; 03D096; 03E069; 03E071; 03E081; 03E083; 03E085; 

03F082; 03F084; 03F085; 03F086; 03F088; 03F089; 03F110; 03G015; 03G016; 03G018; 

03G019; 03G021; 03G094; 03G095; 03G096; 03G097; 03H087; 03H088; 03H089; 03K108; 

03L126; 03L127; 03L128; 03L129; 03L130; 03L131; 03M116; 03M117; 03M118; 03M119; 

03M120; 03M121; 03N082; 03N084; 03N086; 03N087; 03N088. 


